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We have used the technique of laser-Doppler velocimetry to study the transition to 
turbulence in a fluid contained between concentric cylinders with the inner cylinder 
rotating. The experiment was designed to test recent proposals for the number and 
types of dynamical regimes exhibited by a flow before it becomes turbulent. For 
different Reynolds numbers the radial component of the local velocity was recorded as 
a function of time in a computer, and the records were then Fourier-transformed to 
obtain velocity power spectra. The first two instabilities in the flow, to time-inde- 
pendent Taylor vortex flow and then to time-dependent wavy vortex flow, are well 
known, but the present experiment provides the first quantitative information on the 
subsequent regimes that precede turbulent flow. Beyond the onset of wavy vortex 
flow the velocity spectra contain a single sharp frequency component and its har- 
monics; the flow is strictly periodic. As the Reynolds number is increased, a previously 
unobserved second sharp frequency component appears at  RIR, = 10.1, where R, is 
the critical Reynolds number for the Taylor instability. The two frequencies appear to 
be irrationally related; hence this is a quasi-periodic flow. A chaotic element appears 
in the flow a t  RIR, 2: 12, where a weak broadband component is observed in addition 
to the sharp components; this flow can be described as weakly turbulent. As R 
is increased further, the component that appeared a t  RIR, = 10.1 disappears at  
RIR, = 19.3, and the remaining sharp component disappears at RIR, = 21.9, leaving 
a spectrum with only the broad component and a background continuum. The observ- 
ance of only two discrete frequencies and then chaotic flow is contrary to Landau’s 
picture of an infinite sequence of instabilities, each adding a new frequency to the 
motion. However, recent studies of nonlinear models with a few degrees of freedom 
show a behaviour similar in most respects to that observed. 

1. Introduction 
Turbulent flows are the rule rather than the exception in nature, but our under- 

standing of fluid flows is predominately of the laminar case. In  turbulence theory most 
of the attention has been given to the fully developed case and relatively little to its 
onset. The theories of fully developed turbulence introduce a statistical description 

t Present address: Department of Physics, The University of TexBs at Austin, Austin, 
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ad hoe, an approach which assumes that a very large number of modes of the fluid are 
excited. However, the present study of the transition to turbulence indicates that the 
number of modes involved in the appearance of turbulence need not be large. 

The flow between concentric rotating cylinders is a natural choice as a system for 
study because its high symmetry has made the study of the laminar regimes highly 
successful compared to more general flows. Although, as we shall see in what follows, a 
great deal remains unknown in this system, it is unlikely that a deeper understanding 
of the transition problem will come first from a more complex flow. Similarly, in the 
hope of obtaining deeper insight by restricting the problem we have chosen the case of 
the outer cylinder a t  rest with the inner cylinder rotating. The main reason for this 
choice is the apparent difference in the character of the transition to turbulence in this 
case as compared to the case where motion of the outer cylinder predominates. In  the 
latter case, turbulence appears directly and catastrophically (Coles 1965). The hope 
is that a detailed study of a flow which is known to exhibit a sequence of instabilities 
will lead to insight into the onset of turbulence. 

In  $ 2  we review briefly previous work on flow between concentric cylinders. Our 
fluid flow apparatus and laser-Doppler velocimetry system are described in $ 3, and the 
experimental results are presented in $ 4. These results are compared with other experi- 
ments in $ 5  and with theory in 8 6.  

2. Review 
The Reynolds number for the flow between concentric cylinders with the outer 

cylinder at rest can be defined as R = ri Q(r,-ri)/v, where ri and r, are respectively 
the radii of the inner and outer cylinders, Q is the angular velocity of the inner cylinder, 
and v is the kinematic viscosity. Theoretical analyses for this system almost always 
assume the cylinders to be of infinite length, and most experiments have been done in 
long cylinders in an attempt to fulfil this assumption. We consider first the infinite 
cylinder results and then return at the end of this section to the question of the effect of 
finite cylinder length on the transition Reynolds numbers and the uniqueness of the 
flow. 

2.1. Time-independent Jlow 

At small Reynolds number the globally stable unique solution to the Navier-Stokes 
equations is V,  = V,  = 0, V, = Ar + B/r ,  where r ,  0, and z are cylindrical co-ordinates, 
and A and B are constants. Early research (Mallock 1888, 1896; Couette 1890) indi- 
cated that this flow becomes unstable as the Reynolds number is increased, but the 
nature of the instability was not established. In  a classic study of hydrodynamic 
stability G. I. Taylor (1923) observed and explained the transition from azimuthal 
flow to a flow with horizontal toroidal vortices superimposed on the azimuthal flow, 
as shown in figure 1 (a)  (plate 1). Whereas Rayleigh’s (1920) analysis showed that the 
azimuthal flow of an inviscid fluid is unstable a t  infinitesimally small Reynolds num- 
ber, Taylor’s linear stability analysis of the viscous fluid showed that viscosity delays 
the onset of the secondary flow to finite Reynolds number. 

Taylor calculated the critical Reynolds number R, and wavelength A, for the insta- 
bility in the azimuthal flow for the narrow gap limit, (r ,  - ri )  < ri; the wide gap case 
was subsequently considered by Davey (1962), Walowit, Tsao & DiPrima (1964), 
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Roberts (1965), and others. Near R, the equilibrium amplitude of the deviation from 
the azimuthal flow increases as (R-  R,)t, as predicted by Landau (1944; Landau & 
Lifshitz 1959) and observed by Donnelly (1963). As R is increased further the flow 
develops significant spatial harmonic content in the axial direction. Davey (1962) 
expanded the velocity field in a spatial Fourier series in the axial direction and calcu- 
lated the Reynolds number dependence of the Fourier coefficients, and his predictions 
were tested in experiments by Donnelly & Schwarz (1965), Snyder & Lambert (1966) 
and Gollub & Freilich (1976). Above R, Burkhalter & Koschmieder (1973) found the 
axial wavelength remained constant if R was increased slowly, but experiments with 
different initial conditions produced stable stationary flows with wavelengths both 
greater and smaller than A,. 

2.2. Onset of time-dependent $ow 
A number of workers from Taylor onward noted that with increasing Reynolds 
number there is a transition from time-independent Taylor vortex flow to a time- 
dependent flow. Schultz-Grunow & Hein (1956) obtained photographs of this time- 
dependent flow, which consists of transverse travelling waves superimposed on the 
horizontal vortices, as shown in figure 1 (b).  A linear stability analysis of Taylor vortex 
flow analogous to that carried out by Taylor for the azimuthal flow is not possible 
because there is no simple closed solution for Taylor vortex flow. Davey, DiPrima & 
Stuart (1968) carried out a nonlinear analysis of the growth of Taylor vortices and 
examined their stability against small perturbations periodic in both z and 8; their 
analysis is applicable near the Taylor instability where the flow is not greatly different 
from the azimuthal flow. Retaining terms to the third order in the amplitude pertur- 
bation, they found that the time-independent vortex flow for the small gap limit 
becomes unstable at R/Rc 1: 1.04, which is sufficiently close to R, so their approxima- 
tions should be valid. A new flow is established which has waves travelling in the 
azimuthal direction. The mode with one wave around the annulus is the first to 
become unstable, but the two and four wave modes become unstable at only slightly 
higher Reynolds number. The validity of the neglect of terms higher than third order 
was supported by a subsequent calculation (Eagles 1971) to fifth order in the amplitude 
perturbation. 

Other flow visualization studies of the onset of wavy vortex flow have been reported 
by Schwarz, Springett & Donnelly (1964), Coles (1965), Snyder (1968a, 1970) and 
Cole (1976). Eagles (1974) has calculated the torque necessary to maintain wavy 
vortex flow, and the results agreed well with measurements by Donnelly (1958) and 
Donnelly & Simon (1960). Meyer (1969) calculated numerically the wave velocity a t  
three Reynolds numbers near the onset of wavy vortex flow and he obtained agree- 
ment with the measurements of Coles (1965). 

2.3. Transition to turbulence 

We have cited only a few references from the extensive literature that has developed 
on Taylor vortex flow, but we have mentioned all major references of which we are 
aware from the small body of literature on the onset of wavy vortex flow. (It should be 
mentioned again that our comments apply to the case when the outer cylinder is at  
rest.) The literature describing the flow for larger Reynolds numbers is quite sparse: 
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several papers mention that beyond the onset of the wavy flow there is a gradual 
transition to turbulence, but the only systematic detailed study of this transition was 
by Coles (1965). Coles’ photographs of the flow showed that as the Reynolds number 
increased the fluid appears increasingly noisy, as shown in figure 1 ( c ) ,  and at suffi- 
ciently large Reynolds number the azimuthal waves disappear while the vortex 
structure remains, as shown in figure 1 (d). (The disappearance of the waves was also 
observed by Schultz-Grunow & Hein (1956); Burkhalter & Koschmieder (1973); 
Koschmieder( 1975).)Coles used a photocell to measure the frequency of the travelling 
waves passing an observation point, and he found that as R was increased beyond the 
onset of wavy flow the wave frequency decreased from 0-5Q to 0.34!2, and for larger 
R the frequency was constant until the waves became lost in the noise. Coles con- 
cluded that ‘at sufficiently large Reynolds numbers the discrete spectrum changes 
gradually and reversibly to a eontinuous one by broadening of the initially sharp 
spectral lines’; however, this conclusion was reached from inspection of the flow 
photographs and not from spectra. 

2.4. Effect of jinite annulus height 

Cole (1976) has investigated the effect of finite annulus height on the transitions to 
Taylor vortex flow and wavy vortex flow. Although the analytic theory has been 
developed only for the infinite cylinder problem, Taylor vortex flow has been observed 
in experiments with annuli so short that only a few vortices can develop. In  short 
annuli vortices appear at the ends of the annulus at Reynolds numbers well below the 
critical number for Taylor vortex flow in an infinite cylinder (Coles 1965; Cole 1976; 
Benjamin 1978). As the Reynolds number is increased the vortex pattern spreads 
toward the centre of the annulus, filling it at  a Reynolds number that is within the 
experimental uncertainty equal to  the critical Reynolds number for the infinite 
cylinder problem (Snyder 19683; Cole, 1976). However, since the transition is entirely 
continuous, there is actually ‘no bifurcation with which a particular value of R can be 
associated unambiguously, so experimental estimates are necessarily subjective to 
some extent.. .’ (Benjamin 1978). 

Cole (1976) found that the Reynolds number for onset of wavy vortex flow in- 
creases considerably as the annulus height is reduced. The theoretical prediction for 
the infinite cylinder was reached within a per cent or so only for annulus height to 
gap ratios of the order of 100 or greater. The height to gap ratio in the system studied 
by D. Coles (1965) was 27.9 and, in the present study, 20.0, and these annuli both have 
inner to outer cylinder radius ratios of 9. J. A. Cole’s study (1976) shows that for 
these annuli the transition to wavy vortex flow occurs at  Reynolds numbers approxi- 
mately 9 yo and 13 yo, respectively, greater than the theoretical value for an infinite 
cylinder. 

2.5. Uniqueness 

At sufficiently small Reynolds numbers there is for any flow geometry a unique 
stable solution to the Navier-Stokes equations; regardless of the initial conditions the 
flow will asymptotically approach this solution (Serrin 1959). However, at larger 
Reynolds numbers there can be multiple stable solutions to the equations of motion. 
The possibility of nonunique stable flows was not appreciated until the work of Coles 
(1965), but was vividly demonstrated by his surprising discovery that in the flow in his 
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concentric cylinder system as many as 26 distinct stable spatial states could be achieved 
at  a given Reynolds number. The states were distinguished by the number of axial 
vortices p ,  which ranged from 18 to 32, and the number of azimuthal waves m, which 
ranged from 3 to 7. Different states p / rn  were produced by approaching the final 
Reynolds number with different acceleration rates and by rotating and then stopping 
the outer cylinder. Snyder (1969a, b )  subsequently found that different axial states 
were also accessible in the time-independent Taylor vortex flow regime, and Burk- 
halter & Koschmieder (1974) found that the range of axial wavelengths for stable 
stationary states is quite large. Benjamin (1978) has observed distinct spatial states in 
Taylor vortex flow even in an annulus so short that only three or four vortices could 
be accommodated. The non-uniqueness and the associated hysteresis in the transitions 
between different spatial states greatly complicates investigations of the flow beyond 
the primary instability. Coles (1965, p. 416) wrote 'The central experimental difficulty 
is that an observer who knows the current steady operating conditions for the appara- 
tus (geometry, fluid properties, speed), but does not know the previous operating 
history, will be unable to specify the two characteristic wavenumbers which are 
needed to determine the flow in detail'. 

The vexing related problems of non-uniqueness and the effect of finite annulus 
height are formidable and are well beyond the present techniques of nonlinear hydro- 
dynamic stability theory (DiPrima & Eagles 1977). Recently, Benjamin (1978) has 
applied concepts from catastrophe theory to explain the softening of the transition to 
Taylor vortex flow in a finite height annulus. Clearly additional theoretical research is 
necessary to understand how distinct stable spatial states develop and to understand 
the transitions between these states. In  the present study, however, it  is shown that, 
although the uniqueness problem is not understood, insight into the transition to 
turbulence can be gained by exploring the dynamical regimes exhibited by a single 
spatial state (see SS3.5 and 4.2). 

3. Experimental techniques 
3.1. Concentric cylinder $ow system 

Values for the apparatus parameters are given in table 1. The flow is parametrized 
by the Reynolds number, the ratio of cylinder radii, and the ratio of the fluid height 
to the gap between the cylinders. Thus precise control and measurement of these 
variables is essential. 

A uniform and stable rate of rotation of the inner cylinder is obtained by the use of 
a synchronous motor driven by the output of a precision oscillator. The cylinder is 
mounted on a vibration-isolation table and is driven by a belt from a motor which is 
mounted away from the table. The motor frequency is quite stable, but bhe rotation 
period of the belt-driven cylinder, which is measured with an electronic timer, 
fluctuates by about 0.04 % (r.m.5.) in ten cycles due to the flexibility of the belt. 

The cylindrical cell system is contained inside a large box which is maintained a t  a 
uniform temperature by forced air circulation. Since the viscosity of the sample fluid 
(water) varies by approximately 2 %/"C, the temperature must be precisely controlled 
and measured in order to have a well-defined Reynolds number. A temperature 
stability of & 0.05 "C was achieved with a proportional controller which drives a 
heating element inside the box; the 0.05 "C temperature variation corresponds to a 
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Inner cylinder radius r,  
Outer cylinder radius ro 
Ratio of radii r,/ro 
Horizontal fluid surfaces : upper 

lower 
Fluid height h 
Height/gap: h/(ro-r i )  
Fluid kinematic viscosity (water) :t 27.50 "C 

30.00 "C 
60.00 "C 

Number of axial vortices 
Axial wavelength h relative to the gap (at mid-height of the cylinder), 

Number of waves around annulus in wavy state 
Diameter of light scattering particles (less than 0.03 vol. yo) 
Sample dimensions for the velocity measurements (length x diameter) 
Critical Reynolds no., R, (calculated from table 3A in Roberts, 1965) 

h/(ro- T i )  

2.224 f 0.001 cm 
2.536 +_ 0.005 cm 
0.877 
free 
rigid 
6.25 f 0.02 cm 
20.0 
8-45 x 10-8 cma s-1 
8.01 x 10-3 cma s-1 
4.95 x 10-8 cma 8-1 
1 7 t  

2.36 
4 
0.48 pm$ 
0.13 x 0.03 mm 
119.1 

7 From the Handbook of Chemistry and Physics, 56th ed. (CRC, Cleveland, 1975). 

8 Measurements were also made with 0.365 p m  diameter particles. 

TABLE 1. Concentric cylinder fluid flow system with the inner cylinder rotating 
and the outer cylinder a t  rest. 

Measurements were also made with 15 vortices. 

viscosity variation of 0.1 %. The Reynolds number can be varied by changing the 
rotation frequency of the inner cylinder or the viscosity. Most measurements were 
made a t  27.5 "C, but to determine the effect of varying the viscosity some measure- 
ments were also made at 30°C and 60°C (see table 1 and figure 5g). No significant 
difference was observed in the velocity power spectra obtained at the same Reynolds 
number with different rotation frequencies and viscosities. 

The scattering particles for the laser-Doppler measurements were polystyrene 
spheres,either 0.480 or 0-365,um in diameter. The concentrationby volume was 0.03 %, 
which changes the viscosity by only 0-05 yo. 

3.2. Photographic studies and wavelength determination 
The flow pattern was visualized by seeding the flow with Kalliroscope AQlOOO sus- 
pension.? Fluid flow pictures were taken on 10.2 x 12-7 cm Kodak Tri-X Pan pro- 
fessional film with a smalI aperture to provide depth of fieId. A measured exposure time 
of 50 ps, provided by dual electronic flashes, freezes the motion to  within one-half the 
resolving power of the fiIm. The prints were made on Kodak F-4 AZO paper developed 
in normal Kodak Dektol for 1.5 minutes. The same flow cell, temperature control and 
motor drive were used for both photographic and laser-Doppler measurements. 

The positions of the vortex boundaries were measured with a cathetometer over a 
wide range of Reynolds number for several of the spatial states with different numbers 
of axial vortices and azimuthal waves. The number of azimuthal waves was deter- 
mined either from Polaroid photographs or from measurements of the vortex wave 
frequency made with a small helium-neon laser and a photocell. The graphs of the 
vortex boundary positions were extremely useful in determining the spatial state in the 

t Kalliroscope Corporation, Cambridge, Massachusetts 02142. 
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FIGURE 2. Schematic diagram of laser-Doppler velocimetry system. (a) Optical system. 
( 6 )  Digital data acquisition and analysis electronics. 

laser-Doppler measurements. The flow visualization measurements of the vortex 
boundaries and the laser-Doppler measurements of the velocity extrema agreed 
within 0.3 mm, which is 4 % of an axial wavelength. The ability to determine easily the 
spatial state was essential for our laser-Doppler study since the characteristic fre- 
quencies and transition Reynolds numbers are different for different spatial states. 

3.3. Laser-Doppler velocimetry optical system 

The optical part of the laser-Doppler system, which uses the reference beam back- 
scatter geometry, is shown schematically in figure 2 (a ) .  (The laser-Doppler technique 
is discussed by Durrani & Greated (1977).) In  our system the laser beam is spatially 
filtered and collimated and then focused onto the fluid with a 5-5 ern focal length lens. 
The laser power incident on the fluid is 100 mW or less. The light backscattered at  a 
155" angle is collected by the same lens and passes through a pinhole aperture which 
limits the collection angle to approximately one coherence solid angle. The scattered 
light then passes through a beamsplitter and is focused together with a reference beam 
from the laser onto a photomultiplier tube. The scattering volume in the fluid is 
approximately a prolate ellipsoid of revolution, with a major diameter of 0.13 mm 
(in the radial direction) and a minor diameter of 0.03 mm; thus the linear dimension of 
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the scattering volume in the radial direction is approximately one-twentieth of the 
gap between the cylinders. 

The incident wavevector k, and the scattered wavevector k, are both in a vertical 
plane which passes through the cylinder axis. These wavevectors are at equal angles 
with respect to the horizontal plane so the momentum transfer vector q = k, - k, is in 
the horizontal plane; hence the scattered light is Doppler-shifted in frequency by 

wD = V.q = V,q =[(4m/A0)sing8]V,, 

where n is the refractive index (1.333), A, is the laser wavelength (488-0nm), 8 is the 
scattering angle (155"), and K(r, t )  is the radial component of the fluid velocity. The 
Doppler-shifted scattered optical field is mixed with unshifted laser light at the 
photocathode, and the photocurrent i ( t ) ,  being proportional to the square of the inci- 
dent field, oscillates at the Doppler shift frequency. 

3 .4 .  Data acquisition system and spectral analysis 

The data acquisition and analysis system is diagrammed in figure 2 ( b ) .  The photo- 
current is amplified and bandpass filtered, and then clipped and counted for a fixed 
time interval At. A t  the end of each counting interval At the count is transferred to the 
memory of a Digital Equipment Corporation PDP 8/E minicomputer. In  this way the 
frequency of the Doppler signal (and thus the fluid velocity) is simultaneously meas- 
ured, digitized, and stored as a time history in sequential locations of computer 
memory. The measured Doppler shifts are typically lo5 Hz, while the characteristic 
frequencies of the velocity field range from - 0.1 to 10 Hz; hence the Doppler shifts, 
determined in a time short compared to the characteristic time for the velocity field to 
change, yield essentially the instantaneous velocity. In  a strongly turbulent flow where 
the characteristic frequencies can be comparable to the Doppler shift a more sophisti- 
cated measurement scheme is generally necessary. 

The data are transferred from the minicomputer to a Digital Equipment Corpora- 
tion PDP-10 computer for analysis. The power spectral density of the velocity is 
obtained from the squared modulus of the fast Fourier transform of the digital velocity 
record. The velocity vs. time record, the velocity power spectrum, and velocity auto- 
correlation function are graphed on a digital plotter, and another program computes 
and lists the frequencies (first frequency moment) and linewidths (second frequency 
moment) of all spectral lines. 

The GEO window (Otnes & Enochson 1978) is applied to each spectrum to suppress 
side lobes in the raw Fourier transform. If no averaging is employed to reduce statisti- 
cal noise, the frequency resolution (defined as the full-width a t  half-maximum of a 
spectral line) is approximately 2 / T ,  where T is the length of the data record. The 
maximum frequency in a spectrum is the Nyquist frequency, wN = (2At)p l .  Since both 
high resolution and a broad spectral range are needed to distinguish between different 
dynamical regimes in a flow, data records should contain as many samples (n = T / A t )  as 
possible. Our early experiments (Gollub & Swinney 1975) had velocity records with 
1024 points, while the records in the present experiment have 8192 points. Moreover, 
the resolution has been improved by a factor of 40 rather than a factor of 8 by using 
longer sample intervals in the highest resolution spectra. The marked improvement in 
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1.34 1.38 1.42 
W 

FIGURE 3. Segments of a velocity power spectrum computed from a velocity record obtained a t  
RfR, = 5.7. The dimensionless frequency w is in units of the cylinder frequency and the full 
spectrum extends from o = 0 to 2. (a)  The solid curve is a high resolution plot with no smooth- 
ing ; the spectral line is the fundamental frequency component corresponding to the azimuthal 
waves. The spectrum for a pure sine wave with the same centre frequency is shown by the dashed 
curve (see text). The lineshape and linewidth [fdl-width a t  half-maximum (FWHM)] of the fluid 
spectral component is the same a.s that of the pure sine wave. (5) The spectral component w1 at 
w = 1.380 has harmonics 2w1, 3w1, etc. which lie beyond the spectral range sampled, w = 0 to 2. 
These higher frequency components appear as ‘aliases’ folded into the w = 0 to 2 spectrum. For 
example, the component A on the left is a t  2wN- 2w1 = 1.240, where wN = 2.000 is the Nyquist 
frequency; the component A on the right is at  4w1 - 2wN = 1.520. 

resolution has clarified considerably the transition picture [e.g., cf. figure I of Gollub 
and Swinney (1975) with figure 5 of the present paper]. 

The theoretical resolution (full-width at half-maximum of a spectral line) of an 
unsmoothed power spectrum of an 8192 point record processed with the GEO window 
is 0.04 % of the Nyquist frequency (Otnes & Enochson, 1978). This theoretical esti- 
mate of the resolution has been verified for our system by using the full 36 bit accuracy 
of the PDP-10 computer to compute the power spectrum of a pure sine wave with 
values synthesized as 12 bit integers (to simulate the 12 bit numbers in the PDP-8) for 
8192 values of the argument.The spectrum of the pure sine wave record is shown on a 
plot with an expanded frequency scale in figure 3(a)  along with the fluid spectral 
component corresponding to the azimuthal waves. 

Figure 3 (a )  illustrates two general observations: (1) In our spectra the digitizing 
noise is at  least three orders of magnitude smaller than other noise sources. (2) Even in 
the highest resolution spectra, the linewidth of the sharp spectral lines is determined 
solely by the instrumental resolution, i.e. by the length of the data record. The latter 
result indicates that the flow does not follow the short term fluctuations in the cylinder 
frequency, which are comparable to the spectral resolution. 

One of the drawbacks of periodic sampling methods such as the multichannel 
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FIGURE 4. The discontinuous variation of the azimuthal wave frequency when the number of 
szimuthal waves changes from 4 to 5 as the Reynolds number is decreased through R/Rc  = 5.4 
for the state with 17 axial vortices. The wave frequency w1 jumps from 1.38 to x 1.38 = 1.73. 

frequency counting scheme that we have used is that spectra obtained for the range 0 
to wN contain ‘aliases’, which are higher frequency components folded into the 0 to 
wN range (Otnes & Enochson 1978). An example is shown in figure 3 ( b ) ,  which shows a 
spectral component called w1 and aliases of two of its harmonics. The aliases can be 
identified by comparing two spectra obtained with different sampling times. For 
each fluid flow condition we always obtain two spectra, usually with sampling times 
for which wN = 2 and w x  = 20. (Frequencies in this paper are expressed in units of the 
cylinder frequency; hence they are dimensionless.) 

3.5. Choice of spatial state 

At a given Reynolds number there are several distinct stable spatial states which can 
be obtained, depending on the Reynolds number history of the system (see 3 2.5). Early 
in the present study it was established that different states p / m  have somewhat 
different spectra and transition Reynolds numbers. Therefore, it became clear that a 
study of the transitions of a fluid flow would be meaningful only if the spatial state were 
determined for every spectral measurement. However, a detailed study of the dynami- 
cal behaviour of every accessible spatial state and of the transitions between the 
variety of different spatial states was obviously not possible in a reasonable length of 
time. On the other hand, the stability of a spatial state suggested that while different 
states may be nearly degenerate in energy, they are separated by a, potential barrier of 
reasonable height, making it unlikely that the non-uniqueness of a spatial state is 
related to the dynamics of the transition to turbulence. Therefore, we conjectured 
that the Reynolds number dependence could be factored effectively into two separate 
problems, the first being the dependence of the spatial state on the Reynolds number 
history and the second being the transition to turbulence under quasistatic changes in 
Reynolds number for a given spatial state. We have studied the latter problem. 

The spatial state with 17 axial vortices and (where the waves exist) four azimuthal 
waves was arbitrarily selected for detailed study. This state was produced about 26 yo 
of the time by rapidly accelerating the system from rest to R/R, E 10; when this pro- 
cedure yielded states other than 17/4 state, the system was re-started repeatedly until 
the 1714 state was produced. Once it is produced the 17 vortex state is stable under 
quasistatic changes in Reynolds number from R/R, = 5.4 to beyond R/R, = 45 (the 
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largest Reynolds number studied). As the Reynolds number is decreased below 
R/R,= 5-4, the 1714 state loses stability to the 17/5 state, as shown in figure 4. For 
5.4 < R/Rc < 21.9 the 1714 state remains unchanged unless R is changed very rapidly. 
The 4 azimuthal waves disappear at R/Rc = 21.9, but the 17 vortices persist to the 
largest Reynolds number studied. If the Reynolds number is.lowered again below 
R/R,= 21.9, the 4 azimuthal waves reappear. Although our measurements were made 
primarily on the 1714 state, a few measurements were made on other states (see $4.2). 

4. Experimental results 
This section presents first the principal results and then other results, and concludes 

with a summary of the experimental observations. Preliminary results from these 
experiments were reported in Gollub & Swinney (1975); Swinney, Fenstermacher & 
Gollub (1977a, b ) ;  Fenstermacher et al. (1979); Swinney & Gollub (1978). 

4. I .  Principal results 

The radial component of the velocity was measured as a function of time in the range 
5.4 < R/R, < 45 for the state with 17 vortices and (where they exist) 4 azimuthal 
waves. For most measurements the scattering volume was located midway between the 
inner and outer cylinders, usually at a distance one-eighth of an axial wavelength 
below an outflow boundary of a vortex located near the axial centre; however, velocity 
power spectra obtained a t  other radial positions and heights in the annulus contain the 
same frequency components. 

Figure 5 shows velocity records and velocity fluctuation power spectra representa- 
tive of those obtained in the Reynolds number range studied, and figure 6 (plate 2) 
shows photographs of the flow at essentially the same Reynolds numbers. The velocity 
graphs in figure 5 are short segments of records that contain typically 1600 oscilla- 
tions. The time and frequency scales in the figures are in units of the inner cylinder 
rotation period and frequency, respectively, and the power spectra are normalized so 
that 

I?(w) dw = ((AK)2). 

Velocity spectra extending to higher frequencies than those in figure 5 contain no 
fundamental frequency components not shown in figure 5.  

Above the transition at R/Rc = 1.2 from time-independent Taylor vortex flow to 
time-dependent wavy vortex flow the velocity power spectra contain a single fre- 
quency component which corresponds to the azimuthal waves passing the point of 
observation; we call this frequency w l .  An example of a velocity graph and the power 
spectrum for the 17 vortex 4 wave state in this regime is shown in figure 5(a),  and 
figure 6 (a )  is the corresponding flow photograph. Power spectra extending to higher 
frequencies contain many harmonics of wl, as figure 7 (a )  illustrates; figure 1 ( b )  is the 
flow photograph corresponding to figure 7 (a) .  Note in figures 1 ( b )  and 6 (a )  the phase 
angle between the waves on the inflow and outflow boundaries, and the absence of 
small scale structure. The amplitude of the component a t  w1 is 5 orders of magnitude 
above the instrumental noise background. The linewidth of w1 is equal to that of a sine 
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wave sampled for the same period of time (see $ 3.4); hence within the accuracy of the 
measurement the flow in this regime is strictly periodic. 

The second fundamental frequency component of the steady-state flow appears at 
R/R, = 10.06. We call this component w,; a transient component called w2 will be 
discussed in $4.2. The component w, can be seen in the velocity spectra in figures 
5 (b) - (e ) .  The corresponding photographs of the flow, figures 6 (b) - (e ) ,  show a gradual 
increase in the small scale structure of the flow pattern, but we have not been able to 
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FIGURE 5. The time-dependence of the radia.1 velocity component and the Corresponding velocity 
fluctuation power spectra for a flow in a concentric cylinder system with specifications as given 
intable 1. R/P,values: (a)  9.6; ( b )  10.1; (c) 11.0; (d )  15.1; (e)  18.9; ( f )  21.7; ( 9 )  23.0; (h) 43.9. 
The corresponding photographs of the flow are in figure 6. These data were obtained for water 
at 27.5 "C except (9)  which was obtained at  60 "C. I n  terms of the dimensionless time t and fre- 
quency o of the graphs (see text) the time in seconds is given by 4.328t/(R/RC) arid the angular 
frequency in radians/s by 1.452o(R/RC), except for (9 )  where the times (frequencies) are larger 
(smaller) by a factor of 1.71 because of the smaller viscosity at the higher temptvatwe. The 
amaller viscosity is the main reason that the velocities in (9)  are smaller than in (f) or ( h ) .  
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FIGURE 7.  Power spectra of the radial velocity component for flow between concentric cylinders 
in the system described in table 1. The spectrum in (a)  corresponds to the flow pictured in figure 
1 ( b ) ,  and ( b )  corresponds to that pictured in figure 6 ( h ) .  (a)  R/Re  = 5.6. ( b )  R/Rc = 44.0. 

identify any particular feature in the flow photographs with the mode at frequencyw,.t 
However, the spectral power of the component at  w3 is typically two or more orders of 
magnitude less than that of wl, so, unless w3 is appreciably stronger in another co- 
ordinate direction, it may be difficult to observe by flow visualization. 

The appearance of w3 at RIR, = 10-06 has been reproducible to better than 1 % in 
experiments over a two year period. Within the experimental uncertainty there is no 
hysteresis: w3 appears at RIR, = 10.06 with increasing Reynolds number and dis- 
appears at  the same RIR, as the Reynolds number is decreased. After its onset this 
mode grows in amplitude, reaches a maximum, and then declines until it disappears at 
RIR, = 19.3 & 0.2. The latter is also a non-hysteretic transition. No broadening of wg 
beyond the instrumental linewidth was observed. 

The first chaotic element in the flow appears within the regime in which both w1 and 
w3 are present, at  R/Rc 2: 12, where a broad weak component is observed at a fre- 
quency approximately one-third of the wave frequency wl. This component, labelled 
B in figures 5 (d)-(h), has an onset which is difficult to determine accurately because 
the component is weak and the background continuum level is somewhat different for 
different sets of data; moreover, the onset of B may have some hysteresis. 

t See note added in proof on p. 126. 
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Above R/Rc = 19.3, where w3 disappears, the spectrum contains only wl and B and 
their harmonics, as shown in figure 5 (f ). With a further increase in Reynolds number 
the intensity of the component at w1 gradually decreases, and at  RIR, = 21.9 ? 0.2 the 
sharp component at  w1 disappears from the spectrum, although a broad weak feature 
remains, as in figure 5 (9). The disappearance of w1 corresponds to the disappearance 
of the azimuthal waves, which can easily be seen in the flow visualization (cf. figures 
6f, 9 ) .  The disappearance of w1 is especially dramatic in graphs of the velocity 
fluctuation autocorrelation function, (AK(t) A y ( t  + 7))) which oscillates for all 7 for 
RIR, < 21.9 but decays for larger Reynolds number (Swinney, Fenstermacher & 
Gollub 19773). Although the velocity fluctuations become completely uncorrelated at  
long times for R/R, > 21.9, this Reynolds number should not be identified as the 
onset of chaotic flow. The flow begins to become disordered a t  much smaller Reynolds 
number, R/R, N 12, as is marked by the appearance of B and the increasing small scale 
structure in the photographs. 

As the Reynolds number is increased further the background continuum level 
gradually increases, as shown for R/R, = 43.9 in figures 5 (h )  and 7 (b ) ,  but no further 
transitions are observed. Although the spectrum at large Reynolds number has no 
sharp peaks, this does not imply that the flow is totally featureless. Figures 1 (d) and 
6 (9) clearly illustrate that the vortices persist. The velocity fluctuation autocorrelation 
function decays, but measurements of the time-average of the velocity field reveal the 
presence of the vortex structure. 

Some general remarks regarding the velocity records and spectra are in order before 
describing other results and summarizing the observations: 

(1) The frequencies wl, w3, and B are independent of r and z at a given Reynolds 
number, but the intensities of these components and their harmonics depend on r and 
z ;  for example, as would be expected, if the probe volume is at a vortex boundary the 
intensity of the component at 2w1 is greater than that of wl, while for a probe volume 
positioned away from a vortex boundary the second harmonic is weaker than the 
fundamental (as in figure 7a) .  

(2) The component w1 dominates the spectra throughout the wavy vortex flow 
regime. The components w3 and B and their harmonics are easily observed in the 
logarithmic power spectra because of the high signaI-to-noise ratio, but the inte- 
grated power of these components is down by an order of magnitude or more from that 

(3) No sharp fundamental frequency components were observed for the steady- 
state flow other than w1 and w3. All other sharp components are given by nw,+qw,, 
where n and q are integers. A few of these components are labelled in figures 5 (b)--(e) .  

(4) The velocity has a decreasing modulation depth and becomes increasingly 
noisy as the Reynolds number is increased (figure 5) .  This coincides with the increasing 
small scale structure in the flow photographs (figure 6).  

(5) The noise in the velocity records contributes to the background continuum in 
the velocity spectra. For spectra in the same data set the background level increases 
monotonically with increasing Reynolds number; however, the background level a t  a 
given R varies slightly from one data set to another due to small differences in the 
adjustment of the optics and electronics. Thus, for example, the background in 5 ( e )  is 
smaller than in 5 ( d ) ,  but these spectra are from different data set,s, while, for ( c )  and ( d )  
which are from the same data set, the background level increases with increasing R. 

of wl. 
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FIGURE 8. These data illustrate the characteristics of the transient mode w2. (a )  A portion of a 
velocity record obtained a t  R/Rc = 13.0. The times TI and T, arerespectively the periods of the 
components with frequencies o1 and w2. ( b )  The power spectrum corresponding to the velocity 
record in (a).  (c) Dependence of o2 on Reynolds number. 

4.2. Other results 
In  some of the runs we have observed a low frequency component which we call w2 
because it first appears if a t  all at  Reynolds numbers intermediate between the 
appearance of w1 and wg. When present the w2 mode was quite evident in the velocity 
record, as figure 8(a )  illustrates, and could be seen as a sharp spectral component in 
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FIQURE 9. The fundamental frequency components observed in the power spectra of the radial 
velocity component for a flow with 17 vortices and, in the range where the waves exist, 4 waves. 
The wave frequency is q. No sharp spectral components were observed above R / R o  = 21.9. The 
triangular points and vertical bars indicate respectively the centre frequency and linewidth 
(FWHM) of the broad component B ;  the horizontal bar is its average centre frequency. 

the velocity spectrum, as in figure 8 ( b ) .  This mode was usually absent but could be 
produced fairly reliably by rapid starts to R/Rc between about 8 and 12. It lasted from 
a few seconds to as long as two hours, but it was always found to decay. The frequency 
w2 was not accurately reproducible, but on the average it decreases to zero with 
increasing Reynolds number (figure 8 c ) .  

In addition to the studies on the 17/4 state described in the previous subsection, a 
brief survey of the 15/4 state was made (see Swinney et al. 1977a). Both the 15 
and 17 vortex states are stable as the Reynolds number is changed in either direction 
throughout the range 6 5 RIR, 5 45. Furthermore, the same spectra were obtained 
for a given spatial state independently of the way in which the state was achieved. 
Flow visualization studies indicate that the stability of the spatial state is a property 
of the relatively short fluid height to gap ratio; for large heights there are more 
accessible states and more transitions between them. 

4.3. Summury of the results 

Figure 9 shows the Reynolds number dependence of the fundamental frequency 
components wl, w,, and B observed for the steady flow; all the transitions involving 
these modes are listed in table 2. The components wg and B and the transient com- 
ponent w2 have not been observed prior to the present work. Unlike the azimuthal 
wave frequency wl, the modes w2, w, and B have not been identified with any feature 
in the flow photographs. 

The frequency 0, increases monotonically with increasing R, while w1 is fairly 
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Relative 
Reynolds Frequency 

1 .o Taylor vortex flow None Time-independent 
1.2% Wavy vortex flow 0 1  Periodic 
10.1 f 0.1 Wa appears Wi? @a Quasi-periodic - 12 B appears "1, ma, B Weakly turbulent with 

19.3 f 0*2* o3 disappears W l ,  €3 Weakly turbulent with 

21.9 f 0*2* o1 disappears B Weakly turbulent 

number, R/R, Transition componentst Dynemical regime 

sharp spectral components 

sharp spectral components 

t These frequencies characterize the steady-state flow. The component o, is a transient 

$ Cole (1970). 
* These Reynolds numbers are 2.4 % smaller than those reported by Swinney, Fenstermacher 

t Gollub (1977a, b)  and Fenstermacher et al. (1979) owing to an error in the viscosity value used 
in the earlier calculation of R. The cylinder frequencies for the transitions are the same aa 
reported previously. 

TABLE 2. Transitions in the flow between concentric cylinders for the system 
with specifications given in table 1. 

(see $4.2). 
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FIQWRE 10. The dependence of 03/01 on Reynolds number in the regime where w3 was observed. 
The significance of wa/wl = 8 is discussed in 56.4. 

constant, increasing slightly at the ends of the Reynolds number range where this 
mode exists. Within the experimental uncertainty the ratio w 3 / q  increases con- 
tinuously and monotonically with increasing R, as shown in figure 10. Therefore, the 
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ratio w3/wI is in general irrational and the regime with the two modes w3 and w1 is then 
quasi-periodic. 

The frequency of the broad mode appears to  be independent of Reynolds number; 
it is 0.44k0.02 (standard deviation). This spectral component was too noisy and 
weak to determine its lineshape. Its full-width at half-maximum varied from 0.01 to 
0.2 in measurements a t  the same Reynolds number, as figure 9 illustrates; the average 
value was 0.05. There was no apparent systematic variation with Reynolds number. 

S., Comparison with other experiments 
Figure 6 illustrates the increasing small scale structure in the flow and the dis- 

appearance of the azimuthal waves with increasing Reynolds number, as observed in 
previous photographic studies, The only result of the present experiment for which 
there is a quantitative previous observation is the measurement of the Reynolds 
number dependence of the wave frequency wl. Coles (1965, figure 6) found wl/m to be 
a universal function of Reynolds number, independent of the spatial state. Our 
measurements of wl, including data (not shown) which extend down to the onset of the 
wavy regime, are in general agreement with the Reynolds number dependence ob- 
served by Coles, but we note that wl/m at a given Reynolds number can differ by a 
few per cent for different spatial states (see Swinney et al. 1977a, figure 8). 

Recent experiments on time-dependent Taylor vortex flow by Walden & Donnelly 
(1979) using entirely different experimental methods (Donnelly, 1965) are in agree- 
ment with the sequence of time-dependent phenomena described in this paper. 
In addition, they find that for fluid height to gap ratios greater than 25 another 
sharp component appears in the power spectrum in the Reynolds number range 
28 5 R/Rc 5 36. 

A sequence of instabilities quite similar to that described in this paper has been 
observed by Gollub & Benson (1978) in a laser-Doppler velocimetry study of Rayleigh- 
B6nard convection. In  particular, the velocity spectra show a periodic regime with a 
single fundamental frequency followed by a quasiperiodic regime with two funda- 
mental frequencies, and then broadband noise components appear in the spectra; 
finally, the sharp frequency components disappear. 

The sequence of instabilities observed in these studies is certainly not the only one 
possible. It is of course very well known that many flows make a direct transition from 
laminar to turbulent flow. Even in the Taylor and the Rayleigh-BBnard geometries 
the transitional behaviour with different geometrical parameters can be quite different 
from that we have described. For example, Ahlers & Behringer (1978) have discovered 
that in Rayleigh-B6nard convection in a fluid container with a relatively large ratio of 
the diameter to height (=  57), broadband noise occurs in the heat flux just above the 
onset of convection; there is no periodic regime a t  all. This dependence of even the 
qualitative features of the transition process on a geometrical variable does not offer 
much encouragement for efforts to construct general models for the transition to 
turbulence. 
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6 .  Discussion 
Fluid flows are often said to be characterized by one or more discrete frequencies, 

but the experimental evidence supporting this picture is limited. Our velocity power 
spectra provide the strongest evidence of which we are aware for the existence of 
strictly periodic and quasi-periodic regimes in a fluid flow. 

The principal finding of this work is that periodic wavy vortex flow is followed by 
only one additional distinct dynamical regime (quasi-periodic flow with two fre- 
quencies) prior to the appearance of a chaotic flow. The appearance of the broad 
spectral peak, which is the hallmark of a chaotic flow, represents a profound change in 
the mathematical description of the system, but the quantitative change is initially 
small; thus, for example, the broad peak in figure 5 ( d )  contains less than one per cent 
of the total spectral energy. 

6.1. The Landau picture 

Years ago Landau (1944; Landau & Lifshitz 1959) conjectured that the transition to 
turbulence would occur as an infinite sequence of hydrodynamic instabilities, each 
adding a new frequency to the motion. His idea was that successive instabilities could 
be found by a repeated application of linear stability analysis. The flow becomes 
‘ complicated and confused ’ as more, generally incommensurate, frequencies are 
added to the motion, but in this view there is no well-defined onset of turbulence. Even 
at large R the flow is quasi-periodic rather than chaotic. 

Long sequences of hydrodynamic instabilities resulting in quasi-periodic motion 
characterized by many frequencies have never been observed, but there have been few 
experiments that could distinguish between genuinely chaotic flows and complex 
quasi-periodic ones. In  the system studied here the flow is characterized by not more 
than two sharp frequency components a t  any Reynolds number, and it becomes 
chaotic after a small number of instabilities. These observations are contrary to 
Landau’s conjecture. 

6.2. Dynamical systems 

A seminal paper by Ruelle & Takens (1971) has stimulated extensive research using 
dynamical systems theory to study the transition to turbulence. In  this approach the 
‘generic ’ (typical) properties of the solutions of nonlinear ordinary differential 
equations are studied geometrically and qualitatively; partial differential equations 
such as the Navier-Stokes equations are assumed to exhibit similar behaviour. 

We will describe the transitions in the Taylor vortex flow system using the language 
of dynamical systems in order to indicate how a theorem of Newhouse, Ruelle and 
Takens (1978) may relate to our observations. The discussion will be non-rigorous and 
speculative; no attempt will be made to define explicitly all terms. The monographs of 
Hirsch & Smale (1974), Marsden & McCracken (1976) and Teman (1976) should be 
consulted for expositions of dynamical systems theory. 

The behaviour of a nonlinear system can be described in terms of the trajectories of 
the solutions in a phase space. One way to construct a co-ordinate representation of this 
space is to expand the velocity field V(r, t )  in a complete set of eigenfunctions Un(r): 

V(r, t )  = Xa,(t) Un(r). 
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Then in the space spanned by the U, the system at any instant in time is prescribed by 
the point with co-ordinates {a,(t)}. The set of all trajectories corresponding to different 
initial conditions at  a given Reynolds number form a phase portrait of the system. 
Many theorems of dynamical systems are stated in terms of the topology of these phase 
portraits. 

The azimuthal flow at small Reynolds number is characterized by a stable fixed 
point in phase space. This point is globally attracting; thus, regardless of the initial 
conditions, the phase space trajectory will approach asymptotically this fixed point. 
Time-independent Taylor vortex flow is also described by an attracting fixed point. 
However, beyond R, the number of axial vortices is not unique (Snyder 1969b), so 
there must be several stable fixed points in the phase space, each with its own basin of 
attraction. The particular fixed point approached asymptotically depends on the 
initial conditions. 

At the transition to wavy vortex flow the fixed point becomes unstable and the new 
stable attractor is a limit cycle, a closed loop in phase space. Topologically the limit 
cycle is described as a one-dimensional torus, TI,  embedded in the infinite-dimensional 
phase space. 

The next dynamical regime is a quasi-periodic flow with two frequencies, w1 and 
w3. The limit cycle becomes unstable and the new stable attractor is a quasi-periodic 
flow on a torus T2, a closed two-dimensional surface. If the ratio w3/w1 were rational, 
the asymptotic trajectory would be a closed orbit on the torus, but, because the ratio 
appears to be irrational, the trajectory never repeats itself. However, the orbits are 
stable in the sense that, if two orbits are initially close together, they will remain close 
together for all time. 

In  the Landau picture the next transition would be to a quasiperiodic regime 
characterized by three frequencies, and the attractor would be a quasi-periodic flow on 
a three-dimensional torus, T3.  This is not observed. Instead of a regime with three 
discrete frequencies, we find that a broad peak appears, marking the onset of a 
qualitatively different kind of behaviour. The trajectories in phase space are attracted 
toward a subspace on which they wander erratically ad infiniturn. Such a subspace is 
called a ' strange attractor '. Thereis now a sensitive dependence on initial conditions; no 
matter how close together two orbits are initially, they will eventually wander apart. 

Now we can relate the experimental observations to the theorem of Newhouse, 
Ruelle & Takens (1978). The theorem states in part (paraphrasing): in every suitably 
differentiable neighbourhood of a vector field on the torus Tm there is a vector field 
having a strange attractor if m 2 3. Although there may also be nearby periodic 
orbits for m 2 3, the theorem suggests that turbulence may arise from infinitesimal 
perturbations of a quasi-periodic flow on T3;  hence a quasi-periodic flow with three 
frequencies may be unobservable. 

Our results for time-dependent Taylor vortex flow appear to be consistent with the 
predictions of Newhouse et al. That is, the flow characterized by two discrete fre- 
quencies makes a transition to a chaotic flow rather than to a quasi-periodic flow with 
three frequencies. However, Ruelle (private communication) has pointed out that 
since the azimuthal wave frequency w1 could be removed from the spectra by a trans- 
formation to a rotating co-ordinate system, the flow could be viewed as characterized 
by a single fundamental frequency (w3)  before becoming turbulent. 

It should be reiterated that, at the present stage of development of dynamical 
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FIGURE 11. This graph supports the conjecture that the broadband component B is excited by 
the component at w1 - wa, since B is first observed a t  R/Rc N 12, where w1 - wa = B. 

systems theory, its relation to fluid mechanics should be considered as suggestive 
rather than conclusive. Nevertheless, it is notable that while many flows are character- 
ized by fewer than two frequencies before they become turbulent ($5), none of the 
flows that have been studied (to our knowledge) are described asymptotically by more 
than two discrete frequencies. This appears to support the applicability of the New- 
house-Ruelle-Takens theorem. 

6.3. Finite models 

Since the solution of the Navier-Stokes equations for instabilities beyond the first one 
or two is not possible with current mathematical techniques, an alternative approach 
that has been pursued by many workers in recent years is the use of numerical analysis 
to study models with a few degrees of freedom. The classic prototype for such studies 
is the three-variable model of convection which Lorenz (1963) discovered has chaotic 
dynamics. This discovery demonstrates that only three degrees of freedom are needed 
to produce chaotic behaviour, and it has led to the conjecture that turbulence in a 
fluid flow at large Reynolds numbers where many degrees of freedom are excited may 
not be qualitatively different from chaos in a system with a few degrees of freedom. 
Thus it is hoped that the simple models with a few degrees offreedom may exhibit the 
qualitative behaviour of real fluid flows. 

The velocity spectra and photographs for Taylor vortex flow indicate that only a few 
degrees of freedom may be excited up to RIR, N 12, but the presence of the broad 
peak B and the small scale structure visible in the photographs are evidence that many 
degrees of freedom are exoited at  larger Reynolds number. 
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Sherman & McLaughlin (1978) constructed a model with only 5 coupled modes. 
The mode frequencies were assumed rather than calculated and the z dependence was 
neglected. It was found that, as the growth rate of the modes was increased, there was a 
transition from a power spectrum with sharp components to one with broad com- 
ponents similar to the one we have called B. 

A much more realistic model of Taylor vortex flow was considered by Yahata 
(1978). The z dependence was described by a single sinusoidal mode and the azimuthal 
dependence by the mean flow and a sinusoidal mode corresponding to 4 waves. 
Retaining more modes in the radial direction, Yahata obtained a set of 32 coupled 
amplitude equations. Power spectra of the radial component of the velocity showed: 
for RIR, = 7-97, a single sharp frequency component, which presumably corresponds 
to wl; for RIR, = 15-97, two components corresponding approximately to  w1 and w3; 
for RIR, = 22-31, the component a t  w3 had disappeared while the component at w1 
remained intense; and for R/Rc = 23.91 the component at w1 had become broad. The 
behaviour of this model is very similar to that observed in the experiment except for 
the experimental observation of the broad component B. 

Curry (1978) has studied a model of convection with 14 modes and has found that it 
has successive regimes that are periodic, quasi-periodic with two frequencies, and 
chaotic; thus the model’s dynamical behaviour is similar to that observed in our experi- 
ments on Taylor vortex flow. Another feature found for this model that is common 
with the observations for Taylor vortex flow is non-uniqueness (hysteresis), which for 
the model means that there are several attracting sets in phase space a t  the same 
Rayleigh number. 

One aspect of our observations that is not exhibited by these or other nonlinear 
models studied thus far is the simultaneous occurrence of broad and sharp frequency 
components. Further studies of nonlinear models should help guide future experi- 
ments and yield insight into the transition to turbulence problem. 

6.4. Excitation of the broad component 

A possible source of the excitation of the broad component in our spectra is the com- 
ponent with frequency equal to w1 - w3. Within the experimental uncertainty, the 
broad component appears when w1 - w3 = B ,  where B is the centre frequency of the 
broad peak. This frequency matching condition is satisfied a t  R 2: 12, as shown in 
figure 11. It is tempting to speculate that the noise component is being excited by the 
nonlinear interaction between the modes with frequencies w1 and w3. 

Another possible explanation of the appearance of B has been suggested by Bowen 
(1977). His argument is based on the observation that the trajectory of the system in 
phase space could change topological type when the frequencies w1 and w3 become 
commensurate. When the frequencies are incommensurate the phase space trajec- 
tory fills the surface of a torus, whereas when the frequencies become commensurate 
the trajectories could collapse to a single closed curve on the torus. Although the 
rational numbers are dense in the reals, the preference for small integer ratios leads 
to the choice w3/w1 = 8 as the value of the frequency ratio where the chaotic mode 
would appear. Figure 10 shows that this value of the w3/w1 ratio is reached when 
RIR, = 11-9 & 0.4, which is indeed equal within the experimental uncertainty to 
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the Reynolds number corresponding to the appearance of B. However, the 
uncertainties are large and the agreement may well be accidental. 

6.5. Concluding remarks 

The study of the transition to turbulence is motivated in part by the hope that general 
models of transition can be developed. The present and other (J 5) experiments and the 
numerical analyses of nonlinear models indicate that chaotic behaviour occurs after 
a t  most a small number of transitions to distinct regimes. However, the processes are 
certainly different for different systems. For example, in channel flow there is a direct 
transition to turbulence, while in the system we have studied there are four distinct 
regimes (two time-independent and two time-dependent) preceding turbulence. Clearly 
much additional research will be necessary to determine if hydrodynamic flows can be 
grouped into a small number of classes in which the behaviour is qualitatively similar. 

Note added in proof, July 1979. In  recent experiments at The University of Texas, 
M. A. Gorman in collaboration with H. L. Swinney has identified the w3 mode as a 
modula- of the wl mode. The frequencies of the w1 and w3 modes were determined 
over a range of Reynolds numbers by flow visualization techniques for states with 
m = 3, 4, 5 and 6 in an apparatus (ro = 5-95 cm; ri/ro = 0.833) with height to gap 
ratios ranging from 16 to 42. 
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FIGURE 1 .  (a)  R/R, = 1.1. Tinie-iridependerit Taylor vortex flow with 18 vortices. The flows a t  
the uppcr and lower fluid surfaces are inx-ard. The vertical bars are fiducials scparatrd by 10” 
anglcs. ( b )  R/R,. = 6.0. ( c )  R/K, = 16.0. (d )  R/R, = 43.5. Figiires (6) and (c) illustrate wavy 
vortex flow (with 4 xvavcs around tlie anniihis). \vliile in (d )  tlie waves have disappeared. In (b ) ,  
( c ) ,  and (d )  there arc 17  vortices, and tlic flon. is outward at tlie upper surface arid inward at t’he 
lower surface. 
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( b )  

Plate 2 

FIGURE 6. Photographs of the flow corresponding to thc velncity graphs and power spectra in 
figure 5. The relative Reynolds numbers RIB, arc: (a )  9.5, (b )  10.5, ( c )  11.0, (d )  15.0, ( e )  19.0, 
(f) 21.5, (9)  23.0, ( h )  43.3. There are 17 axial vortices and 4 azimuthal waves except in (9)  and 
(h) where the waves have disappeared. 

FENSTERMACHER, SWINNEY AND GOLLUB 


